
1

The Development Cycle for Numerical
Components: Some Issues and Experiences

Lori Freitag

Mathematics and Computer Science Division
Argonne National Laboratory

July 24, 2001

2

The Component Life Cycle

Tool Development
- Numerical Libraries
- Parallel Computing Tools

Tool Development
- Numerical Libraries
- Parallel Computing Tools

Interface Specification
- 1-1 Tool Interoperability
- Common Interfaces

Interface Specification
- 1-1 Tool Interoperability
- Common Interfaces

Component Implementation
- Interface Compliance
- Framework Interactions

Component Implementation
- Interface Compliance
- Framework Interactions

Component Factories
- Automatically Generating Code

Component Factories
- Automatically Generating Code

3

Unconstrained Minimization

Solve H ∆x = -g
H H ∆x = - H g

Compute H

Compute H

Compute F

Update
x = x + α∆xii+1

g
∆X

Min f(x) using a Newton-based method

Linear and
Nonlinear Algebra

Hk

H p

x

p

k

-1 -1
pp

k

k
Discretization

Mesh Local
Physics

Discretization

Mesh Local
Physics - vector (g, x, ∆x)

- matrix (H , H)
- basic component
- component created by composing

several lower-level components

p k

Precon-
ditioner

Krylov
method

4

Ginzburg-Landau Superconductivity Model

Unconstrained optimization. Non-convex function. Hessian is
singular. Unique minimizer, but there is a saddle point.

Compute F: Structured Mesh, FD
Compute H: ADIFOR (manual)
Solve: TAO and PETSc

Compute F: Unstructured Mesh, FE
Compute H: ADIFOR (manual)
Solve: Custom Newton Solver,

BlockSolve

5

Numerical Tools Used

• Optimization
– TAO
– Custom Tools

• Mesh Management
– SUMAA3d
– DAs (as part of PETSc)

• Linear Solvers
– PETSc, BlockSolve95

• Automatic Differentiation
– ADIC, ADIFor

• Parallel Tools
– MPICH, URB Partitioning

All are worthyAll are worthy

Some InteroperateSome Interoperate

None are ComponentsNone are Components

Observations:

6

Interoperability of Numerical
Libraries

• Public interfaces are unique
• Many-to-Many couplings require Many2 interfaces

• Often a heroic effort to understand the guts of both
codes

• Not a scalable solution

SUMAA3d

Overture

DAs

AOMD

PETSc

Trilinos

ISIS++

Hypre

7

For example…
PETSc-SUMAA3d Interoperability

8

Common Interface Specification

Reduces the Many-to-Many problem to a Many-to-
One problem
– Allows interchangeability and experimentation
– Difficulties

• Interface agreement
• Functionality limitations
• Maintaining performance

SUMAA3d

Overture

DAs

AOMD

PETSc

Trilinos

ISIS++

Hypre

D
a
t
a

E
S
I

9

CCA Data Interface Specification
• Subgroup of CCA forum, meeting quarterly since

November 2000
• Goals:

– To support scientific data access at different levels
• low-level raw data
• multi-dimensional arrays
• meshes and fields
• parallel data distributions

– To manage alternative views into a data component via
an “interface broker”

– Intended to be a basic 80-90% solution
• Various prototype implementations underway
• Participants: ANL, UofC, IU, LANL, LLNL, NASA,

ORNL, PNNL, SNL, Terascale, UU

10

Raw Data Interface

• Set of smart pointers containing name, location,
pointer, size, type, strides describing a strip of
memory
– collection of 1D buffers each of which can have a

different type
• Modeled on unix IOvecs
• Low level and general

– can therefore be used as a handle for moving data
efficiently

• Considered to be local only
• Status: C. Rasmussen proposed, Forum voted and

approved

11

Multi-Dimensional Arrays
• Proposed Ports

– LocalArray
– LockingLocalArray
– DataDistQuery
– DataDistDefine
– DistributedArray

• Supports
– access to name, dimension, shape, strided subsets
– various types of distributions (e.g., cyclic, block, mapped)
– existing packages (e.g., Global Arrays, DAs, A++/P++)

• Status:
– LocalArray and LockingLocalArray have been extensively discussed
– DataDistQuery, DataDistDefine recently posted for the first time
– DistributedArray under development

• Point of Contact: David Bernholdt (ORNL)

12

(Unstructured) Meshes and Fields
• Considerations

– Connectivity information is explicitly stored and varies widely
– Underlying data structures are typically either lists or arrays
– Many packages exist that will not be rewritten

• Augmented to support a minimal set of required interfaces

• Status
– Nomeclature is determined (node, edge, face, cell, element)
– Connectivity information available in a table format
– Basic access to mesh entities via “block iterator” interfaces

• Provides efficient access to arrays by returning a pointer to the data
• Provides a natural interface for list-based data structures
• Provides a mechanism for agglomeration strategies

– Prototype implementations: Terascale, AOMD, SUMAA3d
– Testing in real applications to ensure performance

• Point of Contact: Lori Freitag (ANL)

13

Issues that have arisen...

• Nomenclature by (an ever-shifting) committee is fun
• What level of interface should be defined?

– Minimal interfaces
– Interfaces for convenience and performance?

• Cannot achieve the 100 percent solution, so...
– What functionalities should we define interfaces for?

• e.g., should the local array group worry about supporting BLAS
operations?

– What about support of existing packages?
• Are there atomic operations that all support?
• What additional functionalities from existing packages should be required?

• Language interoperability issues
• Additional functionalities such as locking

14

Interface Compliance

• Equation Solver Interface (ESI)
– Relatively mature interface definition effort

• Vectors
• Matrices
• Linear Solvers

– Multi-institutional working group
– Implemented by several solver packages

• Toolkit for Advanced Optimization (TAO)
– PIs: Benson, McInnes, More’
– Large-scale, parallel optimization package

• Unconstrained problems
• Bound constrained problems
• Complementarity problems

– Relies on linear solvers as a kernel computation

15
TAO codeUser code

Application
Initialization

Post-
Processing

TAO

Application Driver

Linear Solvers
(via ESI)

External linear algebra code

ISIS++

PETSc

Trilinos

SuperLUHypre

Matrices
(via ESI)

Vectors
(via ESI)

Others

Function & Gradient
Evaluation

Hessian
Evaluation

Optimization Tools

TAO

AD-generated code

16

Original TAO Interface

TAO_SOLVER tao; /* optimization solver */
Vec x, g; /* solution and gradient vectors
PETSc data struct */
TaoVecPetsc *xx, *gg; /* wrappers for the PETSc vectors */
ApplicationCtx usercontext; /* user-defined context */

TaoInitialize();

/* Initialize Application -- Create variable and gradient vectors x and g */
…
vecCreate(MPI_COMM_WORLD, n, &x);

TaoWrapPetscVec(x, &xx);

TaoCreate(MPI_COMM_WORLD,”tao_lmvm”,&tao);
TaoSetFunctionGradient(tao,x,g, FctGrad,(void*)&usercontext);

TaoSolve(tao);

/* Finalize application -- Destroy vectors x and g */ ...

TaoDestroy(tao);
TaoFinalize();

17

ESI compliance in TAO
(Leads: Steve Benson, Lois McInnes)

• TAO originally developed with PETSc vectors
– has no “native” TAO data structure for vectors, matrices, linear

solvers
– requires certain functionality that is accessed via wrappers of the

underlying supporting packages

• Migrating to ESI Vectors
– Terascale’s implementation as of 11/17/00
– First implementation uses Vector<double,int>
– Closely matching functionality (so far) made it fairly straightforward
– Some additional routines required to support ESI in user functions

• Difficulties:
– Namespace conflict; both PETSc and ESI use the term “Scalar”
– Not all TAO algorithms can be supported with ESI interfaces
– Matrices and linear solvers are expected to be more challenging

18

ESI TAO Interface
Include “Vector.h”
TAO_SOLVER tao; /* optimization solver */
TaoVecESI *xx; /* solution vectors */
ApplicationCtx usercontext; /* user-defined context */

TaoInitialize();

MapPartition<int> myMap(MPI_COMM_WORLD, n, 0); /* ESI vector
allocation */
Vector<double,int> *x=new Vector<double,int>(myMap);

xx=new TaoVecESI(x); /* wrap the
functionality */

TaoCreate(MPI_COMM_WORLD,”tao_lmvm”,&tao);
TaoSetESIFunctionGradient(tao, xx, ESIFctGrad,(void*)&usercontext);

TaoSolve(tao);

/* Finalize application -- Destroy vectors x and g */ ...

TaoDestroy(tao);
TaoFinalize();

19

CCA Compliance in TAO
(Leads: Boyanna Norris, Satish Balay, Lois McInnes)

Paradigm shift; both TAO and the application
become components
– Each required to provide a default constructor and to

implement the Component interface
• contains one method: “setServices” to register ports

– All interaction is through ports
• Application provides a “go” port and uses “taoSolver” and

“MPI” ports
• TAO provides a “taoSolver” port

– There is no “main”

20

setServices

• Takes CCA Services class as input
– Provided by the framework
– Methods: createPortInfo, getPort, releasePort,

(un)registerUsesPort, addProvidesPort,
removeProvidesPort, getComponentID

• Typical Usage
Services *svc;

gov::cca::PortInfo *pi=0

portinfo = svc->createPortInfo(“go”,”gov.cca.GoPort”,0);

GoPort *gp = dynamic_cast<gov::cca::GoPort *>(this);

svc->addProvidesPort(gp,portinfo);

21

The Application Go Port
TAO_SOLVER tao; /* optimization solver */
TaoVecESI *x; /* solution vectors */
ApplicationCtx usercontext; /* user-defined context */
Port *p;
TaoSolverComponent *taoSolver

if (scv==0) return -1; /* check that setServices
was called */

p=svc->getPort((char *) “taoSolver”); /* get the TAO Solver
Port */
if (p==0) return -1; /* check that taoSolver is
out there */
taoSolver = dynamic_cast<TaoSolverComponent *>p;

taoSolver->initialize();

MapPartition<int> myMap(MPI_COMM_WORLD, n, 0);
Vector<double,int> *x=new Vector<double,int>(myMap);
xx=new TaoVecESI(x);

taoSolver->setInitialVector(x);
taoSolver->setGradientVector(g);
taoSolver->create();
taoSolver->setESIFunctionGradient(ESIFctGrad,(void*)&usercontext);
taoSolver->solve();
svc->releasePort(taoSolver);

22

Running the CCA/ESI/TAO example

• Compile each component into a shared library
• Used Sandia’s CCAFFIENE as the framework

– command line interface
• Instantiate each component

– e.g., create componentType instanceName (calls
setServices)

– display component instanceName (shows type, name,
registered ports)

• Connect the appropriate ports
– connect appInstance usesPort solveInstance providesPort

• Press the go button
– go appInstance goPort

23

Component Factory Example
(Leads: P. Hovland, L. Grignon, L. McInnes, B. Norris, B. Smith)

• Automatically generating components from components
– Use automatic differentiation to generate gradient and

Hessian components from function components
• What is Automatic Differentiation (AD), you ask?

a technology for automatically augmenting computer programs,
including arbitrarily complex simulations, with statements for the
computation of derivatives.

• Every programming language provides a limited number of
elementary mathematical functions

• Every function computed may be viewed as the composition of
these so-called intrinsic functions

• Derivatives for the intrinsic functions are known and can be
combined using the chain rule of differential calculus

24

Why use AD?
Compared with numerical differentiation via divided

differences and hand coding, AD offers
• Reduced effort
• Performance

– Both FD and AD compute directional derivatives cheaply
• 1 additional function evaluation for FD

• ~2 function evaluations for AD (can be less)

• Accuracy
– FD very sensitive to step size; must balance truncation

and roundoff error; guaranteed inaccurate
– AD analytic - suffers from roundoff error only

25

Application
Initialization

Post-
Processing

TAO

Gradient Computations in TAO

Optimization Tools
(Newton -based Algorithms)

Application Driver

Parallel Hessian
assembly

Global-to-local
scatter of ghost values

Seed matrix
initialization

Local Hessian
computation

Global-to-local
scatter of ghost values

Parallel gradient
assembly

Local function
computation

Solve
min { f(x)}

Local gradient
computation

TAO codeUser code PETSc code AD-generated code

26

Using AD with TAO

Global-to-local
scatter of ghost values

Parallel function
assembly

Local gradient
computation

Parallel Hessian
assembly

Global-to-local
scatter of ghost values

Local Hessian
computation

Local gradient
computation

ADIFOR or ADIC

Local Hessian
computation

Script file

Can be coded
manually or
automated

Seed matrix
initialization

27

Synergies of Component Design and AD

• AD makes numerical software development easier
– analytic derivatives without handcoding
– mechanisms for exploiting sparsity
– cheap directional derivatives

• Component design makes AD easier/better
– well-defined interfaces enable complete automation of AD
– components reveal high level semantics, making it

possible to exploit mathematics

28

Tool Availability

• TAO
– http://www.mcs.anl.gov/tao

• CCA
– http://www.cca-forum.org

• ESI
– http://z.ca.sandia.gov/esi/

• PETSc
– http://www.mcs.anl.gov/petsc

• Automatic Differentiation
– http://www.mcs.anl.gov/adifor/

